
1

Buttermilk Bay

BOURNE*

Buttermilk Bay Watershed

Introduction to the Watershed Reports

In 2001, the Massachusetts Estuaries Project (MEP) was established to evaluate the health of 89 coastal embayment ecosystems across southeastern Massachusetts. A collaboration between coastal communities, the Massachusetts Department of Environmental Protection (MassDEP), the School of Marine Science and Technology (SMAST) at the University of Massachusetts-Dartmouth, the US Environmental Protection Agency (US EPA), the United States Geological Survey (USGS), the Massachusetts Executive Office of Energy and Environmental Affairs (EEA), and the Cape Cod Commission, the purpose of the MEP is to identify nitrogen thresholds and necessary nutrient reductions to support healthy ecosystems.

The Cape Cod 208 Plan Update, certified and approved by the Governor of the Commonwealth of Massachusetts and the US EPA in 2015, provides an opportunity and a path forward to implement responsible plans for the restoration of the waters that define Cape Cod.

On Cape Cod there are 53 embayment watersheds with physical characteristics that make them susceptible to nitrogen impacts. In its 2003 report, "The Massachusetts Estuaries Project – Embayment Restoration and Guidance for Implementation Strategies", MassDEP identifies the 46 Cape Cod embayments included in the

MEP. Thirty-three embayments studied to date require nitrogen reduction to achieve healthy ecosystem function. A Total Maximum Daily Load (TMDL) has been established (or a draft load has been identified and is under review) for these watersheds. For those embayments not studied, the 208 Plan Update recommends planning for a 25% reduction in nitrogen, as a placeholder, until information becomes available.

The 208 Plan Update directs Waste Treatment Management Agencies (WMAs) to develop watershed reports within 12 months of certification of the Plan Update. The Watershed Reports outline potential "bookend" scenarios for each watershed that include two scenarios to meet water quality goals in the watershed – a traditional scenario, which relies completely on the typical collection and centralized treatment of wastewater, and a non-traditional scenario, which uses remediation, restoration, and on-site reduction techniques to remove nutrients from raw and treated wastewater, groundwater and affected waterbodies.

The intent of the Watershed Reports is to outline two distinct approaches for addressing the nutrient problem. The reports are not intended to identify preferred and detailed plans for each watershed, but to facilitate discussions regarding effective and efficient solutions, particularly in watersheds shared by more than one town. In some cases, towns have provided information on collection areas and nontraditional technologies that have been specifically considered by that town.

The 208 Update developed a regionally consistent database of the nitrogen load entering each watershed. This data set includes estimates of wastewater, stormwater and fertilizer loads - similar to methodologies used by the MEP. Using this regionally consistent database, the Watershed MVP tool (wMVP) was developed so that different strategies (i.e., bookend scenarios) to reduce excess nitrogen load

could be evaluated. The Watershed Reports use the MEP recommendations for the required nitrogen load reductions necessary to meet the threshold loads (that serve as the basis for nitrogen management), and then use the wMVP and the regionally consistent database values to develop bookend scenarios. There are variations of load between the MEP and wMVP, primarily due to differences in comparing older and newer databases.

Terms Defined

Total nitrogen load: the nitrogen load from the watershed contributed by septic, wastewater, fertilizer, stormwater, golf course, landfill, and natural sources.

Attenuated nitrogen load: the nitrogen load from the watershed that reaches the embayment after the effect of natural attenuation in wetlands, ponds or streams.

Threshold: the amount of nitrogen that a water body can receive from its watershed and still meet water quality goals; this number is based on MEP technical reports or Total Maximum Daily Load (TMDL) reports.

Reduction target: an approximation of the amount of nitrogen that needs to be removed from the watershed to achieve the threshold; this number is calculated by subtracting the threshold number from the attenuated total watershed load, and is for planning purposes only.

Percent contribution: the percent of attenuated nitrogen load that a town contributes to the watershed.

Kilogram responsibility: is calculated by applying the percent contribution to the reduction target and indicates the amount of nitrogen, in kg, that a community is responsible for addressing.

Total Maximum Daily Load: a regulatory term in the Clean Water Act, describing a value of the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. Establishing a TMDL is necessary when a water body has been listed on the 303D list of impaired waters.

Buttermilk Bay

BOURNE*

WATER THREAT LEVEL

Buttermilk Bay is the northernmost estuary in Buzzards Bay with shoreline located in Bourne and Wareham. The Buttermilk Bay watershed extends from the village of Buzzards Bay into Plymouth and Wareham. The Bay supports a variety of recreational uses including boating, swimming, shell fishing and fin fishing. Buttermilk Bay is part of the Buzzards Bay National Estuary Program (www.buzzardsbay.org), which actively monitors and reports on the health of Buzzards Bay and its contributing embayments and provides technical assistance.

The Problem

For the purposes of the Section 208 Plan Update, areas of wastewater need are primarily defined by the amount of nitrogen reduction required as defined by the Total Maximum Daily Load (TMDL) or Massachusetts Estuaries Project (MEP) technical report. An MEP report will not be developed for the Buttermilk Bay watershed and other Cape watersheds where nitrogen is not believed to be a critical issue due to tidal flushing, low intensity development, or geomorphology.

All of the information below is for the Bourne portion of the Buttermilk Bay watershed, unless otherwise noted.

- MEP TECHNICAL REPORT STATUS: Not Being Studied
- TMDL STATUS: Not Being Studied

The Commission compiled the following updated water use and nitrogen loads using the regional wMVP database (see page 2), enabling a current estimate of nitrogen loading.

- TOTAL WASTEWATER FLOW: 42 MGY (million gal vear)
 - Treated Wastewater Flow: 1 MGY
 - Septic Flow: 41 MGY
- TOTAL UNATTENUATED NITROGEN LOAD: 5,610 kg/Y (kilograms per year)

ATTENUATED NITROGEN LOAD: Not assessed; Buttermilk Bay has significant opportunities for natural attenuation through ponds and streams.

CONTRIBUTING TOWNS

Percent contributions listed below are the aggregate subembayment contributions identified in Appendix 8C of the Cape Cod Section 208 Plan Update (contributions are based on attenuated load where available). See Appendix 8C for detailed town allocations by sub-embayment.

■ BOURNE: *The Buzzards Bay watershed is mostly located in the Towns of Plymouth and Wareham, which are outside of the jurisdiction of this planning effort.

Data for towns outside of Cape Cod is not part of the Cape Cod Commission's database at this time.

BUTTERMILK BAY ESTUARY

- **EMBAYMENT AREA:** 476 acres
- EMBAYMENT VOLUME: Unknown
- 2014 INTEGRATED LIST STATUS: Category 5 for fecal coliform and nutrients
 - Category 5: requiring a TMDL
 - www.mass.gov/eea/docs/dep/water/ resources/07v5/14list2.pdf

BUTTERMILK BAY WATERSHED

General watershed characteristics according to the current wMVP regional database (see figure on page 1 for watershed boundary) follow.

■ WATERSHED CHARACTERISTICS

- Acres: 6,916Parcels: 824
- Medical Parcels: 85%
- Parcel Density: 8.4 acres per parcel (approx.)

Freshwater Sources

PONDS

- **IDENTIFIED SURFACE WATERS:** 9
- NUMBER OF NAMED FRESHWATER PONDS: 3
- PONDS WITH PRELIMINARY TROPHIC CHARACTERIZATION: 0

There are a number of ponds in the Plymouth portion of the watershed; including several large ponds.

STREAMS

■ SIGNIFICANT FRESHWATER STREAM OUTLETS:

Not characterized

There are numerous stream tributaries to Buttermilk Bay. Stream flows have not been gauged and nitrogen contributions to Buttermilk Bay have not been evaluated by the MEP. Nitrate concentrations higher than 0.05 mg/L background concentrations, evident in public supply wells located in pristine areas, provide evidence of the impact of non-point

source pollution on the aquifer and receiving coastal water bodies.

DRINKING WATER SOURCES

■ WATER DISTRICTS: 3

(including Wareham and Plymouth)

Buzzards Bay Water District

■ GRAVEL PACKED WELLS: 1

■ 1 has nitrate concentrations between 0.5 and 1 mg/L

■ SMALL VOLUME WELLS: 0

The Towns of Plymouth and Wareham are served by the Plymouth Water department and Onset and Wareham Fire Districts.

Drinking water data from Cape Cod Commission and MassDEP data sources — nitrate values obtained from drinking water wells are from 2009-2012. The state and federal drinking water limit for nitrate is 10 mg/L. The Cape Cod Commission nitrate loading standard is 5 mg/l.

Degree of Impairment and Areas of Need

Since there is no evidence of water quality impairment at this time, wastewater needs are determined based upon other factors, such as Title5 compliance.

The 2014 Integrated List of Impaired Waters lists Buttermilk Bay as being a Category 5 impaired water body for Fecal Coliform.

The Buzzards Bay National Estuary Program, which has been monitoring water quality since the 1990s, indicates that water quality appears to be trending toward improvement.

Town of Bourne Local Progress

The Town of Bourne completed a targeted wastewater planning effort for the Buzzards Bay downtown area. A portion of the Buzzards Bay area is sewered and up to 200,000 gallons per day (gpd) of wastewater is conveyed to Wareham for treatment and disposal. Bourne is limited to this flow through its agreement with the Town of Wareham.

The Cape Cod Commission worked with the Town of Bourne to develop a wastewater and water supply report for Buzzards Bay in 2012. The report provided the town with a detailed assessment of the needs, alternatives, facility siting options, and estimated costs of providing wastewater infrastructure to support the revitalization of the Buzzards Bay area.

In March 2013 the town hired a wastewater coordinator and soon after hired a contractor to determine if either of two identified sites — Queen Sewell Park and land behind the Bourne Veterans Memorial Community Center — is suitable for wastewater disposal. The Queen Sewell Park site was determined to be a suitable site to consider moving forward.

Town staff is currently coordinating with the Cape Cod Commission on next steps for the Buzzards Bay area, in particular, how to manage the utilization of the Queen Sewell Park disposal site. The Commission and the Cape Cod Water Protection Collaborative met with the Bourne Board of Selectmen in December 2015 to develop a plan for completing watershed reports and launch a financial review to assist the town with development of a wastewater funding program.

In addition, a public-private partnership in the Cataumet area is moving forward. The owner of Kingman Marina is constructing a neighborhood scale wastewater treatment facility to service the marina, 15 new townhomes adjacent to the marina, and about 52 existing homes in the adjacent Cedar Point neighborhood. In exchange for capacity at the facility for the Cedar Point neighborhood the town allowed for increased density in the new townhome development.

Most recently, the town received a grant through the Southeast New England Coastal Watershed Restoration Program (SNEP), in collaboration with the Buzzards Bay Coalition and neighboring towns to identify options for treatment in the Buttermilk Bay watershed.

Commission staff met with Bourne staff to review and discuss watershed scenarios and the town requested that the Commission complete watershed reports on their behalf.

At the Spring 2017 Town Meeting, Bourne voted to fund, as part of the Capital Improvements Plan, \$335,000 to continue investigations related to effluent disposal for the planned Buzzards Bay Wastewater Facility.

Traditional & Non-Traditional Scenarios

SCENARIO DEVELOPMENT

Through the 208 Stakeholder process, the Commission developed "bookend" scenarios — one looking at a possible solution using traditional collection and treatment, the other examining a possible suite of non-traditional technologies — to address the nitrogen management needs in each watershed. These bookend scenarios provide guidance for communities as they continue to discuss alternatives, priorities, and opportunities for identifying well-considered solutions that will address communities' needs and interests.

REGIONAL DATA

In preparation for this effort, the Commission collected regionally consistent data for the purposes of watershed scenario development. Both parcel data and water use data was identified and collected for the entire region. While the scientific basis for planning is the thresholds identified in the MEP technical reports, each report uses data from different years, and in some cases the MEP data used are 10 or more years old. In addition, there are watersheds on Cape Cod without the benefit of an MEP report; therefore, similar data was not available for planning purposes.

The updated regional data set was used to estimate wastewater, stormwater and fertilizer loads, using the same methodologies as the MEP. This approach allows for a reevaluation of existing development, which may have changed

in the last 10 years. Parcel data included in the regional database is from 2010-2012 and water use data is from 2008-2011, depending on the water supplier and based on best available data. This approach allows for regionally consistent watershed scenario development.

WATERSHED SCENARIOS

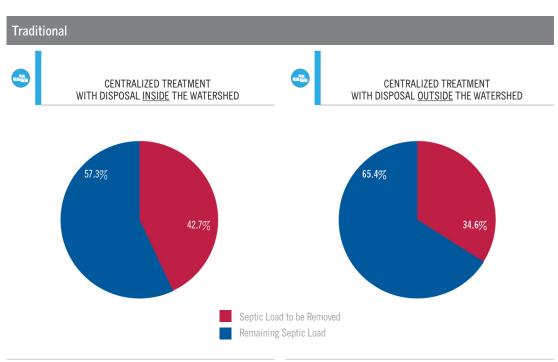
The watershed scenarios that follow outline possibilities for the watershed. A series of non-traditional technologies that might be applicable are included, as well as the amount of residential load that would need to be collected if a traditional collection system and treatment facility was implemented. The pie charts show the load to be collected for treated effluent disposal both inside and outside the watershed.

Site specific analyses of collection areas may result in the need to collect wastewater from more or fewer parcels to meet the nitrogen reduction target. The scenarios presented are conceptual and are meant to inform discussions regarding effective and efficient solutions; they are not specific recommendations and should be viewed as resource information for additional and more detailed wastewater management planning.

TOTAL UNATTENUATED NITROGEN LOAD VALUES (FROM WMVP)

Buttermilk Bay Nitrogen Sources Total Unattenuated Watershed Nitrogen Load (kg-N/yr)

Wastewater ¹	4,058
Fertilizer ²	722
Stormwater	602
Other ³	228
TOTAL WATERSHED LOAD	5,610
Total Webserbard Three-balds	4 200
Total Watershed Threshold ⁴	4,208
TOTAL LINIATTENHIATED LOAD	


TOTAL UNATTENUATED LOAD TO BE REMOVED⁵ 1,403

1. Includes nitrogen loads from septic systems and wastewater treatment facilities. 2. Includes nitrogen loads from lawns, cranberry bogs, and golf courses. 3. Includes nitrogen loads from landfills and atmospheric deposition to vacant land. 4. Assumes 25% reduction is needed, as no MEP report has been completed for this watershed and no threshold has been established. 5. The loads and threshold presented here only represent Bourne's contribution to the watershed (excludes loads from Plymouth). Therefore, the load to be removed is Bourne's allocation only.

Traditional & Non-Traditional Scenarios

Non-Traditional					
_	UNIT OF APPLIED TECHNOLOGY	ATTENUATED NITROGEN REMOVED IN KG/Y			
N+P+K MGMT	25 % Nitrogen Reduction - Fertilizer Management	181			
BMPs	25 % Nitrogen Reduction - Stormwater Mitigation	150			
N-P	25 Acres - Fertigation - Cranberry Bogs	300			
	3 Acres - Aquaculture/Oyster Beds	750			
	TOTAL	1,381			

A summary of the approach and methodology that was applied using non-traditional technologies follows at the end of this report.

Assumes load to be collected and treated is disposed in the watershed, requiring additional collection to offset the load. Assumes that the load to be collected and treated is removed from the watershed so no offset is required.

Methodology for Selecting Non-Traditional Technology Scenarios

This section summarizes the approach and methodology that was applied during the 208 Update to develop plans for reducing nitrogen loading to estuaries using non-traditional (NT) technologies. It includes descriptions of regional credits for stormwater and fertilizer reductions, regional screening for potential sites for several technologies, and site-specific analyses for others. Nitrogen attenuation rates for each technology were derived from the Technologies Matrix. The nitrogen thresholds for each embayment were determined from the Massachusetts Estuaries Project (MEP).

This section summarizes the approach and methodology that was applied during the 208 Update to develop plans for reducing nitrogen loading to estuaries using non-traditional (NT) technologies. It includes descriptions of regional credits for stormwater and fertilizer reductions, regional screening for potential sites for several technologies, and site-specific analyses for others. Nitrogen attenuation rates for each technology are noted below, based on the Technologies Matrix or newer data. The nitrogen thresholds for each embayment were determined from the Massachusetts Estuaries Project (MEP).

Regional credits were developed for potential stormwater retrofits and fertilizer reductions. They were calculated as a percent reduction of existing nitrogen loads as identified in the MEP reports and updated GIS data developed by the Cape Cod Commission.

- STORMWATER MANAGEMENT: Most Cape communities have already begun the process of identifying significant untreated stormwater discharges and developing appropriate mitigation projects. With the prospect of the MS4 regulatory requirements it was assumed that additional mitigation efforts would be implemented. Based upon the evidence developed by the University of New Hampshire Stormwater Center that several vegetated stormwater management practices (including bioretention and constructed wetlands) are able to achieve nitrogen reductions of 50% or more and the assumption that only a portion (estimated at 50%) of identified sites would be retrofitted a 25% nitrogen reduction credit was assumed for each watershed. Specific locations and number of locations were not identified: this was deferred to individual towns to consider as part of the suite of nitrogen management strategies.
- FERTILIZER REDUCTIONS: Based upon the success of most Cape Cod towns to implement either regulatory or non-regulatory fertilizer management programs and the efforts of the Cape Cod Extension Service in

educating homeowners a 25% reduction in fertilizer applications was assumed for each watershed.

Regional GIS screening methods were developed to identify locations for some non-traditional technologies. A GIS viewer was developed as an on-line tool for staff and consultants to utilize during the watershed planning process.

■ CONSTRUCTED WETLANDS/

PHYTOREMEDIATION: A GIS-based screening method was developed by the Cape Cod Commission to identify and rank parcels of land that have potential for the location of constructed wetlands and phytoremediation. The ranking utilized parcel size and ownership, depth to groundwater, suitable soils, distance from wetlands, and undeveloped parcels. A nitrogen removal rate of 500 kg/Y/acre and 532 kg/Y/acre was used for Constructed Wetlands and Phytoremediation, respectively.

■ PERMEABLE REACTIVE BARRIERS (PRBS): A
GIS-based screening method was developed to identify existing roads that are proximate to receiving waters, downgradient of high density development, run perpendicular to groundwater flow (to have the highest potential to intercept nutrients in groundwater), and where the depth to groundwater is relatively shallow to maximize the area of saturated thickness treated in the aquifer.

Methodology for Selecting Non-Traditional Technology Scenarios

identify areas where fertigation wells could be utilized to recapture nitrogen-enriched groundwater and re-apply it to the managed turf areas to serve both irrigation and fertilization needs. Most golf courses were assumed to be eighteen holes with a fertilized area of 75 acres. Fertigation water was assumed to have an average concentration of 5 mg/liter. An uptake/attenuation rate of 80% was applied resulting in an assumed nitrogen reduction of 300 kg/year for each golf course with effectively located fertigation wells. In some cases other irrigated areas (such as athletic fields and cemeteries) were identified as potential fertigation locations. A nitrogen removal rate of 4 kg/Y/acre was used.

The MVP tool and other site-specific tools were utilized to quantify nitrogen load reductions for several potential NT interventions.

Technologies Matrix).

PERMEABLE REACTIVE BARRIERS: for each PRB that was identified during the prior GIS-screening process an approximate capture area was identified using available water table maps and the wMVP tool. Upgradient contributing areas were digitized within wMVP and the nitrogen load was calculated. A nitrogen reduction of 72.5% was applied (calculated as an average of the reported attenuation range from the Technologies Matrix).

- CONSTRUCTED WETLANDS (WITH COLLECTION): Constructed wetlands were considered as a tertiary, polishing treatment for existing wastewater treatment plants. This included small-scale wastewater treatment systems. A nitrogen removal rate of 500 kg/Y/acre was used.
- AQUACULTURE/OYSTER REEFS: Potential areas for aquaculture and/or oyster reef restoration were considered based upon discussions with town representatives and review of maps to identify potential areas for these operations without significant conflicts to navigation. In some cases actual recent aquaculture expansions were included where they were developed after the MEP reports were prepared. An assumption of 1 million oysters per acre was used with a nitrogen removal rate of 250 kg/Y/acres.
- FLOATING CONSTRUCTED WETLANDS: Potential areas for floating wetlands were considered in areas where no conflicts with navigation or swimming areas were identified. A nitrogen removal rate of 0.4 kg/Y/sq foot was used.
- INLET WIDENING AND COASTAL HABITAT

 RESTORATION: Only considered in areas where these projects were identified by towns or state agencies and where detailed hydrologic investigations and modeling had been performed due to wide variations in nitrate load reduction, flushing impacts, impacts on flooding, and costs (dredging only, replacing infrastructure,

- removing and replacing roadways or bridges, etc.). Nitrogen removal rates were based on MEP or other studies.
- INNOVATIVE & ALTERNATIVE SEPTIC SYSTEMS **AND ECOTOILETS:** In most cases specific locations for these technologies were not identified. Rather general estimates for the percent adoption were provided based upon discussions with the stakeholder groups and their views on potential adoption rates. In some watersheds a 5% adoption rate was included based upon this stakeholder input. In a limited number of instances specific locations for these technologies were included based upon town input and suggestions. A nitrogen removal rate of 1.658 kg/Y for each system was used for I&A Septic Systems, and 2.984 kg/Y for enhanced I&A systems. A removal rate of 2.542 kg/Y was used for each home installation of an Ecotoilet, and 0.467 kg/Y for installation of urine diversion toilets in public settings.

Finally, the locations of specific technologies were discussed during the 208 stakeholder engagement process. Stakeholders across the Cape 'groundtruthed' potential NT locations and NT scenarios were adjusted accordingly.